Diindolylmethane (DIM) Information Resource Center References Section

Providing References for Biomedical Investigators Conducting Research on Diindolylmethane (DIM) and DIM Supplement Formulations

Diindolylmethane (DIM) Scientific Reference 1 from 1999:

Biochem Pharmacol. 1999 Sep 1;58(5):825-34. Cytostatic and antiestrogenic effects of 2-(indol-3-ylmethyl)-3,3′-diindolylmethane, a major in vivo product of dietary indole-3-carbinol. Chang YC, Riby J, Chang GH, Peng BC, Firestone G, Bjeldanes LF.

Under acidic conditions, indole-3-carbinol (13C) is converted to a series of oligomeric products thought to be responsible for the biological effects of dietary 13C. Chromatographic separation of the crude acid mixture of 13C, guided by cell proliferation assay in human MCF-7 cells, resulted in the isolation of 2-(indol-3-ylmethyl)-3,3′-diindolylmethane (LTr-1) as a major antiproliferative component. LTr-1 inhibited the growth of both estrogen-dependent (MCF-7) and -independent (MDA-MB-231) breast cancer cells by approximately 60% at a non-lethal concentration of 25 microM. LTr-1 had no apparent effect on the proliferation of MCF-7 cells in the absence of estrogen. LTr-1 was a weak ligand for the estrogen receptor (ER) (IC50 70 microM) and efficiently inhibited the estradiol (E2)-induced binding of the ER to its cognate DNA responsive element. The antagonist effects of LTr-1 also were exhibited in assays of endogenous pS2 gene expression and in cells transiently transfected with an estrogen-responsive reporter construct (pERE-vit-CAT). LTr-1 activated both binding of the aryl hydrocarbon (Ah) receptor to its cognate DNA responsive element and expression of the Ah receptor-responsive gene CYP1A1. LTr-1 was a competitive inhibitor of CYP1A1-dependent ethoxyresorufin-O-deethylase (EROD) activity. In summary, these results demonstrated that LTr-1, a major in vivo product of I3C, could inhibit the proliferation of both estrogen-dependent and -independent breast tumor cells and that LTr-1 is an antagonist of estrogen receptor function and a weak agonist of Ah receptor function.